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ABSTRACT 

Much clinical trials data-based research is characterized by the 

unavoidable problem of dropout as a result of missing or erroneous values. 

This paper aims to review some of the vari-ous techniques to address the 

dropout problems in longitudinal clinical trials. The fundamental concepts 

of the patterns and mechanisms of dropout are discussed. This study 

presents five general techniques for handling dropout: (1) Deletion 

methods; (2) Imputation-based methods;(3) Data augmentation methods; 

(4) Likelihood-based methods; and (5) MNAR-based meth-ods. Under each 

technique, several methods that are commonly used to deal with dropout 

are presented, including a review of the existing literature in which we 

examine the effectiveness of these methods in the analysis of incomplete 

data. Two application examples are presented to study the potential 

strengthes or weaknesses of some of the methods under certain dropout 

mechanisms as well as to assess the sensitivity of the modelling 

assumptions. 

 

Keywords: Incomplete longitudinal clinical trials, Missing at random 

(MAR), Imputation, Weighting methods, Sensitivity analysis. 
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INTRODUCTION 

Longitudinal clinical studies repeatedly measure the outcome of interest and covariates over a sequences of 

time points. Longitudinal studies play a vital role in many disciplines of science including medicine, 

epidemiology, ecology and public health. However, data arising from such studies often show inevitable 

incompleteness due to dropouts or lack of follow-up. More generally, a patient’s outcome can be missing at 

one follow-up time and be measured at the next follow-up time. This leads to a large class of dropout patterns. 

This paper only pays attention to the monotone dropout pattern that results from attrition, in the sense that if 

a patient drops out from the study prematurely, then on that patient no subsequent repeated measurements 

of the outcome are obtained. Other types of dropout patterns are possible, such as intermittent dropout, but 

we focus on monotone dropout pattern as it is common in longitudinal studies. These commonly include 

studies done by the pharmaceutical industry as contained in protocols for many conditions where data are not 

collected after a study participant discontinues study treatment. This is highlighted in a recent report on the 

prevention and treatment of dropout by the National Research Council. A summary of the report was provided 
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by Little et al. (2012). However, even in these studies, there typically is both unplanned and planned dropout. 

A predominately monotone pattern for missing outcome data is less common in clinical outcome studies and 

in publically-funded trials which are more of a pragmatic nature (e.g., trials in which the intention-to-treat 

estimand is the primary objective). 

Given the problems that can arise when there are dropouts in longitudinal clinical trials, the following question 

is forced upon researchers. What methods can be utilized to handle these po-tential pitfalls? The goal is to use 

approaches that better avoid the generation of biased results. 

The choice of statistical methods for handling dropouts has important implications on the esti-mation of the 

treatment effects, depending on whether one is considering a more of a pragmatic nature analysis or a more 

exploratory analysis. In case of a pragmatic analysis (intention-to-treat analysis), the goal of the clinical trial 

researchers is to produce a pragmatic analysis of the data. 

However, for incomplete longitudinal clinical trials, the dropouts complicate this process as most of the 

methods to be used to dealing with the dropout problem produce an exploratory analysis in nature rather 

than a pragmatic perspective. The literature presents various techniques that can be used to deal with 

dropout, and these range from simple classical ad hoc methods to model-based methods. These methods 

should be fully understood and appropriately characterized in relation to dropouts and should be theoretically 

proven before they are used practically. Further, each method is based on a specific dropout mechanism, but 

one needs to realize that at the heart of the dropout problems it is impossible to identify the dropout 

mechanism (will be discussed later). Thus, it is important to address the mechanisms that govern dropouts. It 

is noted that (Little, 1995) the term dropout mechanism can be used, instead of missing data, when it relates 

to subjects dropping out of a clinical trial study prematurely, particularly in the context of longitudinal studies. 

In this review article, we review some of the various techniques to address the dropout problem in 

longitudinal clinical trials. The main objective is to investigate various techniques, and to discuss the most 

appropriate techniques as well as gain insight into the appropriateness of these techniques for handling 

incomplete longitudinal clinical trials due to dropouts. This paper is divided into five strategies: deletion, 

imputation-based, data augmentation, dealing with data as incomplete, and MNAR model-based. In Section 2, 

a necessary notation in terms of the underlying dropout mechanisms is introduced. In Section 3, an overview 

of methods for analyzing incomplete longitudinal clinical trials data is given with the focus on the 

aforementioned strategies. In Section 4, two application examples are presented including a description of the 

full data sets used in the analysis and the study designs. Full analysis and results of the applications are given. 

Finally, the paper ends with a conclusion in Section 5. 

2.Dropout mechanisms  

A major issue concerning dropout mechanisms is to explain why data are dropping out. Dropout mechanisms 

however do not imply knowledge about how the dropouts came to be unavailable. The term dropout is 

misused by many researchers as, in many trials, data are missing not because a participant chooses to drop out 

but instead because the protocol is written not to follow partici-pants following treatment discontinuation. 

Discontinuation might be due to adverse effects, lack of efficiency in the execution of the study, both of these 

reasons, or other reasons. As demonstrated by Rubin (1976), the mechanisms that lead to missingness can be 

classified into three basic categories. Data are considered missing completely at random (MCAR) when the 

mechanism that generates the dropouts is a truly random process unrelated to any measured or unmeasured 

characteristic of the study participants. A second category is missing at random (MAR) in which the dropout 

mechanism is random meaning, conditional on the observed measurements characteristics of the study 

sample, the dropout mechanism is independent of the unobserved measurements. Finally, missing not at 

random (MNAR), is one in which the dropout process depends on unobserved mea-surements and possibly on 

the observed measurement characteristics of the study sample. Let Yij be the response measurement of 

individual i at time j, where i = 1, 2, ...N and j = 1, 2, ...n, which can be observed or missing. Let Rij be an 

indicator variable, where Rij = 1 if Yij is observed and 
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Rij = 0 if Yij is missing. We now split Yi as Yi = (Yio, Yim), representing observed and unobserved measurements, 

respectively. Let Di be a dropout indicator for each individual i, 

                        (1) 

Model (1) measures the occasion when the dropout occurs. The full data for the ith individual are given by Yi 

and Ri, with joint pdf that can be factorized as  

       (2) 

where θ is the measurement process, γ is the dropout process and Xi is the design matrix of covariates for the 

ith individual. The model for dropout process can be re-written as 

      (3) 

where di is a realization of the random variable Di. In Equation (1), it is assumed that all subjects are observed 

on the first occasion so that Di takes possible values between 2 and n + 1. The maximum value (n + 1) 

corresponds to a complete measurement sequence. Using Equation (3), the MCAR dropout model reduces to P 

(Di = di | Yi, Xi, γ) = P (Di = di | Xi, γ), while the MAR dropout model is given by: P (Di = di | Yi, Xi, γ) = P (Di = di | 

Yio, Xi, γ), where dependence on Yi is only through Yio. Rubin’s (1976) classifications are related to the level of 

bias that dropout may exert on statistical analysis where it is stated that MCAR has negligible potential impact 

and MNAR has the greatest potential impact. Furthermore, it is impossible to distinguish which underlying 

mechanism of dropout is in play, unless one knows the motivation for a patients’s dropping out. This problem 

is discussed further in Molenberghs et al. (2008) who show that the formal-based distinction between MAR 

and MNAR is not possible. This is because for any MNAR model there exists an MAR model that fits the data 

equally well, but they differ in the prediction of what is unobserved. Hence, it is broadly agreed that the role of 

such MNAR model is in sensitivity analysis. On the other hand, there are two important broad classes of 

dropout: dropout that is ignorable from the analysis, and dropout that is non-ignorable. If one can reasonably 

assume that dropout occur under either MCAR or MAR conditions, the problem is deemed ignorable, and the 

dropout process need not be explicitly modeled. Moreover, when data are MCAR or MAR, the likelihood-based 

and Bayesian frameworks allow to ignore the dropout process since they use only observed data, conditional 

on the model being correctly specified (Little and Rubin, 2002). In contrast, when data are MNAR, the dropout 

process cannot be ignored from the analysis. In the application to dropout classifications, ignorability, as it 

applies to dropout mechanisms, does not mean that investigators can ignore dropouts. It refers to the fact that 

factors that cause dropout are unrelated or weakly related to the estimated intervention effect. In a restricted 

sense, the term refers to whether dropout mechanisms must be modeled as part of the parameter estimation 

process or not (Allison, 2002). 

3.Techniques for handling dropout Different methods have been suggested for dealing with dropout problems. 

Different techniques or methods use different approaches to addressing dropout problems. Although the 

dropout problem is ubiquitous, there is still no firm consensus on what statistical procedures should be used 

for analysis or on the circumstances under which they should be applied. What follows now is a brief 

description of the several methods that are commonly used to deal with dropout, including a review of the 

existing literature in which we examine the effectiveness of these methods in the analysis of incomplete 

longitudinal clinical trials data. 

3.1 Deletion methods  

There are several ways to deal with dropout. One of them is to discard patients with incomplete sequences, 

and then analyze only the units with complete data. Methods that use this approach are called deletion 

methods. These methods do not replace or impute dropouts and do not make other adjustments to account 

for dropout. They share many properties in terms of dropout mechanisms and the inefficiencies inherent in 

losing data for statistical power, although not all to the same degree. The main advantage of these techniques 

is their simplicity, and the ease with which they can be applied using much of the standard statistical 

softwares. Brown (1983) states that some of the deletion methods are good options, but only when used 
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under specific circumstances (i.e., when the amount of dropouts is small and when data are MCAR, for 

example, the complete case discussed below and the available case which uses all available cases and discards 

data only at the level of the variable, not at observation level). Namely, both methods need that f(Yio, Di | Xi) = 

f(Yio | Xi)f(Di | Xi), where f(Yio | Xi) represents the ordinary marginal distribution of the complete data. This 

implies that f(Yio | Di, Xi) = f(Yio | Xi), that is, the dropout is MCAR. However, because such circumstances are 

rare, McKnight et al. (2007) advise that one should avoid the deletion methods whenever possible. 

Furthermore, Little and Rubin (2002) do not recommend any of the deletion methods except in specific 

situations where the amount of dropouts is limited. Next, we briefly discuss the complete case analysis as a 

deletion method, explaining its use, strengths and weaknesses. 

3.2 Complete case method  

The simplest deletion approach is the complete case analysis or list-wise deletion analysis in which the analysis 

uses only those patients with completely recorded observations. In other words, for all variables under 

consideration, the complete case confines attention to observations that are available. For example, in 

longitudinal clinical trials, this method uses only those patients with observed responses at each time point. 

This method has numerous advantages. The first is its simplicity in that the method can be quite effective and 

may be satisfactorily used with small amounts of dropouts. However, it is important to make sure that, even in 

such situations, the deleted cases are not unduly influential (Schafer and Graham, 2002). The second 

advantage to complete case analysis is that, it is easy to carry out. It is used by default routines in most 

statistical software packages, but it has varying details of implementations. The primary disadvantages of this 

method are that: (1) it can produce inefficient estimates, in the sense of loss of statistical power specifically 

when drawing inferences for sub-populations; and (2) when data are not MCAR, then the method can lead to 

serious biased results. In other words, it is a valid method only when data are MCAR (Little and Rubin, 1987), 

but even when MCAR holds, it can still be inefficient (Schafer and Graham, 2002). Thus, McKnight et al. (2007) 

state that one should give careful consideration before the use of this method regardless of its ease of use. 

Furthermore, it is easy to envisage situations where complete case can be very misleading. Wang-Clow et al. 

(1995) presents examples where the complete case has led to misleading results. 

3.3 Imputation-based methods  

In contrast to the above mentioned technique, we now discuss methods that do generate possible values for 

the dropouts. These alternative methods are called imputation methods, where one fills-in (imputes) the 

dropouts to obtain a full data set, and the resultant data are then analyzed by standard statistical methods 

without concern as if the set represented the true and complete data set (Little and Rubin, 1987). This is the 

key idea behind commonly used procedures for imputation which include, simple and multiple imputation (M). 

Simple imputation techniques substitute one value for every dropout in the data set (Little and Rubin, 1987, 

2002). In contrast to simple imputation techniques, MI fills in more than one value for each dropout to allow 

for the appropriate evaluation of imputation uncertainty (Little and Rubin, 1987). 

3.4 Simple imputation methods  

There are simple imputation methods that include: (1) mean imputation, in which dropouts are replaced with 

the estimated mean of the data set; (2) last observation carried forward (LOCF), in which every dropped out 

value is replaced by the last observed value from the patient, i.e., it is a method that assumes that the 

outcomes would not have changed from the last observed value. 

The method assumes that if Yij (endpoint measurement) is missing due to dropout from the study then Yij = 

Yij−1, where j = 2, ..., J − 1, meaning if the endpoint measurement is dropping out of the trial, it would be 

imputed by the last observed measurement. LOCF has been recognized as a popular technique in dealing with 

incomplete longitudinal clinical trials data. It does well when the dropout mechanism is assumed to be MCAR. 

However, because such a circumstance is rare, Molenberghs and Kenward (2007) advise that one should avoid 

this method whenever possible. This method will be revisited in detail in the application section. LOCF will be 

revisited in the application section; (3) regression imputation, where the dropouts are imputed using the 

prediction taken from a multiple regression analysis; (4) Hot Deck imputation, in which the dropouts can be 
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replaced with the observed data taken from a matched data from the variables that contain observed values; 

and (5) stochastic regression imputation, in which dropouts are replaced by a value that is predicted using 

regression imputation plus a residual that is drawn to reflect uncertainty in the predicted value. Simple 

imputation methods are general and flexible for handling dropout, and can be implemented quickly in several 

statistical softwares (for example, SAS, R, S+ and others). 

However, with respect to accurately reproducing known population results (parameter estimates and standard 

errors), each of these single imputation methods have been found to be inadequate. The problems linked with 

these techniques include: (1) the performance of these techniques is poor even when the ignorable dropout 

assumption (MCAR or MAR) holds, a situation that limits their suitability to quite a restricted set of 

assumptions (Allison, 2002); (2) they may produce seriously biased results that may or may not be predictable; 

(3) when using these techniques, the standard errors and standard deviations tend to be underestimated, and 

therefore there is a greater likelihood of committing type-I error (see, Schafer and Graham, 2002). The reason 

is that variability of the estimators is also underestimated since imputed data are treated as observed data; 

and (4) these techniques may present inconsistent point estimates when data are MCAR. 

3.5 Multiple imputation methods (MI)  

MI has received a significant amount of attention in the literature recently. This method is a simulation-based 

approach that imputes dropouts multiple times (Little and Rubin, 1987). MI is valid under the MAR dropout 

assumption (Little and Rubin, 1987). The key idea of this approach is to fill in the dropouts multiple times in 

order to construct multiple complete data sets. MI involves three distinct steps: First, the dropouts are filled in 

M times to generate M complete data sets. In the process of filling in dropouts, a joint distribution for the 

complete data set (including observed and unobserved data) and a prior distribution of parameters are 

assumed for the data augmentation algorithm to simulate random draws from the dropout distribution. Under 

the MAR dropout mechanism, M independent random numbers can, given the observed values, be generated 

from the stationary conditional distribution of the dropouts, using the Bayesian estimation technique. After 

the imputation step, M complete data sets are obtained. The use of the number of imputation (M) needs to be 

specified. Most often, the choice of M=5 is considered adequate and the efficiency of the parameter estimate 

based on imputation is given by (1+ξ/M)−1, where ξ is the rate of dropout (Rubin, 1987). This formula shows 

that the relative efficiency of the MI inference is related to the dropout rate (ξ) in combination with the 

number of imputations (M). Rubin’s (1987) simulation indicates that the number of imputations can generally 

be constrained to be fewer than 10. Many statistical practices tend to support Rubin’s heuristics of 3 to 10 

imputations. Second, each of the M complete data sets are analyzed using standard procedures, such as linear 

mixed model, depending on the types of response and assumptions used for the model. Third, the estimates 

from the M analyses are then combined to produce a single estimate that incorporates the usual sampling 

variability as well as the variability due to the dropouts. 

 

Further, we assume that the vector of repeated measurements Yi is described by the parameter vector β. In 

the first imputation step, the objective is to impute the dropouts with draws from meaning that in the process, 

we generate draws from the distribution of β, thus taking sampling uncertainty of estimating β into account. 

Alternatively, a Bayesian approach in which uncertainty about β is incorporated by means of using some prior 

distribution for β. After formulating the posterior distribution of β, the following imputation algorithm is used: 

A random β∗ is first drawn from the posterior distribution of β, then a random Yim is selected from f(yim | yio, 

β∗). This posterior distribution is approximated by the normal distribution. The so-imputed dropouts are next 

augmented to the observed data, yielding complete data, Y = (Y o, Y m), which are then used to obtain β and 

its variance, V = V ar(β). The steps mentioned above are independently repeated a number of times, say M 

times, yielding β∗m and V m, for m = 1, ..., M. Finally, the results from the M completed (imputed) data are 

combined into a single inference. The overall estimated parameter for β and its estimated variance V are 

with W and B representing the average within-imputation variance and the between-imputation variance, 

respectively (Rubin, 1987). There is an important question to be solved when applying MI approach, that is 
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what variables should be included in the imputation model. The MI inference assumes that the model that is 

used to analyze the multiply imputed data (the analysis model) is the same as the model used to impute 

dropouts (the imputation model). However, practically, the two models necessarily need not be the same 

(Schafer, 1997). The quality of the imputation model will influence the quality of the analysis model results, so 

it is important to carefully consider the design of the imputation model. Therefore, to obtain high-quality 

imputations for a particular variable, the imputation model should include variables that are potentially 

related to the imputed variable and variables that are potentially related to the missingness of the imputed 

variable (Schafer, 1997). Van Buuren et al. (1999) recommended to include the following covariates in the 

imputation model: 

 

variables in the analysis model, variables associated with dropouts of the imputed variable, and variables 

correlated with the imputed variable. However, one can also include auxiliary variables, which may or may not 

have dropouts. Generally, including variables that do not have dropouts are required in the imputation model. 

3.6 Data augmentation methods  

Data augmentation methods avoid many of the inherent shortcomings of deletion methods. Such methods 

derive parameter estimates from the available data as well as from either the probability model or an 

underlying distribution. In contrast to some of the single imputation methods, data augmentation does not 

replace dropouts. In estimating parameters, this algorithm takes into ac-count the dropouts, the observed 

data and the relationships between observed data and several underlying assumptions which is to say that 

parameter estimates from the observed data are aug-mented by the additional information provided by the 

proposed probability model or underlying distribution. In the context of incomplete data analysis, Maximum 

Likelihood (ML), Expectation Maximization (EM), Markov Chain Monte Carlo (MCMC) and weighting methods 

are considered to be augmentation methods. However, as argued by McKnight et al. (2007), the classification 

of several of these methods as augmentation methods is not clear-cut, specifically for the MCMC, ML and EM 

methods. The MCMC method has been referred to as an augmentation method within the context of multiple 

imputation (Allison, 2002). The ML and EM methods have been described as model-based methods by Little 

and Rubin (1987), while these procedures have also been referred to as data augmentation by Schafer (1997). 

We now limit our focus to just a few of these methods as data augmentation methods, namely ML, EM and 

weighting methods. 

3.7 Maximum likelihood (ML)  

ML was not designed specifically to deal with dropout in the same way as do, for example, LOCF or multiple 

imputation. ML is an estimation procedure for estimating parameters under different models such as 

structural equation models (SEM) and ordinary least squares in regression. We discuss the ML as a method for 

handling missing data. Examples for applying ML to missing data problems can be found in Little and Rubin 

(2002). Furthermore, in a variety of situations, ML has proven to be an excellent technique for dealing with 

dropout. When dropout is ignorable (MAR or MCAR), ML does well, and it produces unbiased estimates 

(Allison, 2002). Therefore, the ML is fairly easy to describe under this assumption. If the assumption is met, ML 

estimators for missing data produce estimates that have the following desirable properties: unbiased 

estimates in large samples, estimates that are asymptotically efficient (small standard errors) and satisfy 

asymptotic normality which is to say that estimates approximate a normal distribution which can then be used 

to exploit a normal approximation for statistical inference, such as finding confidence intervals and p-values 

(McKnight et al., 2007). ML can furthermore be implemented in most statistical software including SAS, SPSS, 

S-Plus and others. 

3.8 Expectation maximization (EM)  

The EM algorithm was originally proposed by Dempster et al. (1977). It is the process of calculating and 

imputing a value for each missing variable based on best prediction models. The 
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EM algorithm is a very general iterative algorithm for ML estimation in dropout problems. This algorithm 

requires the less restrictive MAR assumption. The key idea behind EM is to deal with the dropout problem and 

the complications of estimates related to the ML estimation by attempting to solve smaller complete data 

problems which lead to parameter estimates for the entire data set (missing and complete data). The EM 

algorithm handles the dropout using the following steps: (1) fill-in the values for dropout by using estimated 

values generated by ML; (2) estimate parameters based on data in step 1; (3) re-estimate parameters based on 

the parameter estimates from step 2; and (4) re-estimate parameters based on the re-estimated data from 

step 3, and so on, iterating the process until the final step converges on a solution that differs by only a little 

amount from the previous solution. Each iteration of the EM algorithm consists of two steps, namely the 

expectation step and the maximization step (Dempster et al., 1977). Each step is completed once within each 

algorithm cycle which is to say that cycles are repeated until a suitable convergence criterion is satisfied. 

Assume θ0 is an initial parameter vector and θi are the current measurements. In case of dropouts, the 

expectation step calculates the objective function that is equal to the expected value of the observed 

measurement log-likelihood, conditional upon the observed measurement and the current parameters Q(θ | θ 

i) = R `(θ, Yi)f(Yim | Yio, θi)dYim = E*`(θ | Yi) | Yio, θi+, i.e., substituting the expected value of Yim, given Yio and 

θi. For the maximization step θi+1, the parameter vector that maximizes the log-likelihood of the imputed 

measurements is, Q(θi+1 | θi) ≥ Q(θ | θ i), for all θ. Further theoretical justification of these steps can be found 

in Little and Rubin (2002). According to Dempster et al. (1977), the fitted parameters (on convergence) are 

equal to a local maximum of a likelihood function which is the maximum likelihood estimate in the case of a 

unique maximum. The EM algorithm has two disadvantages: firstly, it is typically very slow to converge, and 

secondly, it lacks direct provision of a measure of precision for the maximum likelihood estimates. Several 

proposals have been made to overcome these drawbacks, and we refer to the techniques as provided by Louis 

(1982) and Baker (1992). 

3.9 Weighting methods  

As introduced by Zhao and Lipsitz (1992), weighting methods are based on observed values. In this way, after 

ignoring all the dropouts from the analysis, the remaining observed values are weighted in accordance with 

how their distribution approximates the full sample or population. The methods employ the weights in order 

to correct for either standard errors associated with the parameters or the population variability. To derive 

suitable weights, the predicted probability of each response is estimated from the data for the variable with 

dropouts. Assuming that dropout time is discrete, j1, j2, ..., jn, define the set of ordered dropout times, with 

(Di = jn) for those who complete the study. Therefore, weighting methods only require πi = pr(Di = jn) for the 

study completers. This πi can be calculated sequentially, i.e., πi1πi2...πij−1, where πij = pr(Di > jn | Di ≥ jn) can 

be computed from the remaining individuals at jn, conditional upon the history of all observed measurements 

up to jn. Here we notice that the probability for dropout, πi should be estimated from available 

measurements, using a series of logistic regressions for the πij ’s. Overall, the weighting methods are valid 

given that the model for πi is correctly specified. Generally speaking, weighting methods are a good option 

under certain circumstances, for example, when a dropout pattern is monotone or is under univariate analysis. 

In the context of survey data, Rubin (1987) discusses several methods for applying and estimating weights. 

Under a suitable joint model for the outcome and covariates, these weighting methods are, in many instances, 

expected to produce results similar to those of multiple imputation (Schafer and Graham, 2002). In the field of 

biostatistics, Rubin et al. (1995) developed a weighting regression model that requires an explicit model for the 

dropout mechanism but relaxes some of the parametric assumptions in the data model. In the case of non-

likelihood marginal models, the semi-parametric method of generalized estimating equations (GEE) by Liang 

and Zeger (1986) has been widely applied for handling dropout. However, GEE requires the stronger MCAR 

mechanism to hold (Liang and Zeger, 1986). This can be seen by the fact that the GEE score function no longer 

has zero expectation when a MAR mechanism holds. Two subsequent modifications of the GEE method have 

been proposed to make it valid under the more general MAR condition: weighted generalized estimating 

equations (WGEE) and multiple imputation based on generalized estimating equations (MI-GEE). Robins et al. 
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(1995) devised WGEE extending GEE which requires MAR rather than the much stronger MCAR mechanism, 

but needs the specification of a dropout model with regard to observed outcomes or covariates, in view of 

specifying the weights. WGEE involves weighting response measurements by their inverse probability of being 

observed, estimated from some assumed dropout model (Robins et al., 1995). The idea of WGEE is based on 

the observed responses after weighting them to account for the probability (propensity) of dropout. Early 

account of WGEE can be found in Robins et al. (1995). MI-GEE denotes a method based on a combination of 

MI and GEE model analysis. The primary idea of the combination of MI and GEE comes from Schafer (2003). 

He proposed an alternative mode of analysis based on the following steps. (1) Impute the missing outcomes 

multiple times using a full-parametric model, such as a random effects type model. (2) After drawing the 

imputations, analyze the so-completed data sets using a conventional marginal model, in this case the GEE 

method. (3) Finally, perform MI inference on the so-analyzed sets of data. As pointed out by Beunckens et al. 

(2008), MI-GEE comes down to first using the predictive distribution of the unobserved outcomes, conditional 

on the observed ones and covariates. In terms of the dropout mechanism, in the MI-GEE method, the 

imputation model needs to be specified. 

This specification can be done by an imputation model that imputes the dropouts with a given set of plausible 

values (Beunckens et al., 2008). Details of this method can be found in Beunckens et al. (2008). Currently, 

weighting methods can be carried out in most popular packages, such as STATA, SAS and SUDANA. An 

alternative weighting method for handling dropout in longitudinal clinical trials is inverse probability weighted 

(IPW) estimating equations, in which complete cases are weighted by the inverse of their probabilities of being 

observed in order to adjust for dropouts. This method is valid under MAR assumption (Robins et al., 1995), but 

requires specification of a dropout model in terms of observed outcomes and/or covariates. IPW has been 

recognized as an attractive approach because it does not require complete specification of the joint 

distribution of the longitudinal responses but rather is based only on specification of the first two moments. 

Several methodological research work in the literature (Robins et al., 1995; Robins and Rotnitzky, 1995) have 

improved the efficiency of IPW. This improvement leads to the doubly robust estimators. The idea of double 

robustness was developed by Carpenter et al. (2006). 

3.10 Likelihood-based MAR methods  

Alternative methods that ignore the dropout mechanism in longitudinal studies are the likelihood-based 

methods of using available data. Namely, These methods are valid under MAR dropout. This likelihood-based 

analysis is also termed likelihood-based ignorable analysis, or direct likelihood analysis (DL) (Verbeke and 

Molenberghs, 2005). These methods use the observed data without the need of neither deletion nor 

imputation. In other words, no additional data manipulation is necessary when a direct likelihood analysis is 

envisaged, provided the software tool used for analysis is able to handle measurement sequences of unequal 

length. The major advantage of these methods is their simplicity, that is, they can be fitted in standard 

statistical software without involving additional programming, using such tools as SAS software, PROCs MIXED, 

GLIMMIX and NLMIXED. Despite the flexibility and ease of implementation of likelihood-based methods, there 

are fundamental issues when selecting a model and assessing its fit to the observed data which do not occur 

with complete data. These methods are sensible under linear mixed models in combination with the 

assumption of ignorability. Such models give valid inferences under the restrictive assumption of MAR, where 

the specification of a dropout model is not necessary, and inference is based on the likelihood function 

conditional on the observed data alone. In other words, when data are MAR, parameters of the measurement 

process are not involved in the dropout process which is to say that a likelihood based analysis provides valid 

inferences, with no need to impute, delete, or weight. This means that the parameters of the measurements 

and dropout processes are distinct, therefore the estimates based on the maximum likelihood can be drawn by 

maximizing f(Yio | Xi), where f(Yio | Xi) represents the ordinary marginal distribution of the particular subset of 

Yi determined by Yio. Hence, there is no need to specify the dropout mechanism for the likelihood-based 

inference, that is, the contribution of f(Di | Yio, Xi) to the likelihood can be ignored. Note that the likelihood-

based methods requires the model for f(Yio | Xi) to be correctly specified as well as they need full 
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distributional assumptions about Yi. Further, under MNAR dropout, the statistical inferences based on these 

methods that ignore the dropout mechanism may yield biased results. According to Verbeke and Molenberghs 

(2000), these mixed-effect models permit the inclusion of patients with dropouts at some time points for both 

dropout patterns, namely monotone and intermittent. For incomplete longitudinal Gaussian outcome, 

Likelihood-based mixed effects models were proposed by Laird and Ware (1982). When outcomes are of a 

non-Gaussian longitudinal clinical trials type, the generalized linear mixed model (GLMM) (Breslow and 

Clayton, 1993) that is typically estimated through maximum likelihood, can be used. In GLMM, the 

measurement model and the dropout model are both specified, and the inference is based on maximizing the 

likelihood function, conditional on the observed data as well as the dropout process. Since DL ideas can be 

used with a variety of likelihoods, in this study we consider the general linear mixed-effects model (Laird and 

Ware, 1982) as a key modelling framework which can be combined with the MAR dropout assumption. For Yi, 

the model can be written as follows 

Yi = Xiβ + Zibi + εi,         (8) 

where bi ∼ N(0, D), εi ∼ N(0, Σi) and b1, ..., bN , ε1, ..., εN are independent. The meaning of each term in 

equation (8) are described as follows. Yi is the ni dimensional response vector for subject i, containing the 

outcomes at ni various measurement occasions, 1 ≤ i ≤ N, N is the number of subjects, Xi and Zi are (ni × p) and 

(ni × q) dimensional matrices of known covariates, β is the p-dimensional vector containing the fixed effects, bi 

is the q-dimensional vector containing therandom effects and εi is a ni dimensional vector of residual 

components, combining measurement error and serial correlation. Finally D is  a general (q × q) covariance 

matrix whose (i, j)th element is dij = dji and Σi is a (ni × ni) covariance matrix which generally depends on i only 

through its dimension ni, i.e., the set of unknown parameters in Σi will not depend upon i. This means 

marginally Yi~N(Xi, ZiDZi
’ 
+∑i). Thus if we define Vi = ZiDZi

’
i + Σi as the general covariance matrix of Yi, then 

 from which a marginal likelihood can be 

contributed to estimate β. In the likelihood context, when MAR mechanism and mild regularity conditions 

hold, parameters _ and  are independent, and that likelihood based inference is valid (Little and Rubin, 1987). 

Then, likelihood of interest is based on the factor   

3.11 MNAR-based methods  

All the above methods do not however provide an optimal solution to the problem of MNAR dropout. This 

kind of dropout poses a major complication, in particular in terms of longitudinal clinical trials setting. There 

are several applications in the literature which argue that it might be necessary to accommodate dropouts in 

the modelling process, see, for example, Diggle and Kenward (1994) and Little (1993, 1994). In other words, it 

is argued that one must model the measurement process jointly with a model for dropout which can itself be 

considered to be of a scientific interest. Arguably, in terms of MNAR dropout, a wholly satisfactory statistical 

analysis of the data is not feasible, and therefore more careful consideration is necessary with regard to 

dealing with the MNAR situation. For MNAR dropout, advanced modelling strategies have been developed by 

modelling the joint distribution of the dropout indicators pattern and the measurements process (including 

observed and dropouts). As summarized by Verbeke and Molenberghs (2000) there are at least three 

factorizations possible to model the joint distribution of the measurements and dropout indicators. First of all, 

there is outcome-dependence factorization, in which dropout indicators are conditioned on the 

measurements. Secondly, there is pattern-dependence factorization, in which the distribution of the 

measurements is a mixture of the distribution for individuals of distinct sub-groups as determined by the 

dropout patterns. Thirdly, there is parameter-dependence factorization, which is conditional on the group of 

parameters shared by the two components so that the measurements process and dropout indicators are 

conditional independent. Correspondingly and based on the above-mentioned factorizations, there are thus 

three kinds of modelling strategies: selection models (SMs), pattern-mixture models (PMMs) and shared 

parameter models. According to Verbeke et al. (2001), the practical limitation of any of these model 

factorizations is that they are sensitive to the assumptions made on the measurements model and the dropout 

mechanisms. Molenberghs et al. (2004) state that different analysis models can have a distinct impact on 
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conclusions drawn from the same study. This is the key idea behind commonly used procedures for sensitivity 

where, given a practical data set, various modelling frameworks with different dropout mechanisms are 

applied to the same data. Based on local influence methods (Cook, 1986), Verbeke et al. (2001) presented 

global and local influence methods as additional approaches to study sensitivity. Robins et al. (1998) and 

Forster and Smith (1998) provided a Bayesian sensitivity analysis routes as alternative frameworks for 

sensitivity analyses. A more extensive case study on the advantages and disadvantages of several sensitivity 

routes is not clear-cut as this point is an active area of ongoing research. 

3.11.1 Selection models (SMs)  

SMs factor the joint distribution of the measurement “complete data”, Yi and Di in terms of f(Yi, Di | Xi) = f(Yi | 

Xi)f(Di | Yi, Xi), i.e, a marginal measurement model that describes the distribution of the underlying complete 

data, and a dropout mechanism that describes the distribution of the dropout indicators, conditional upon the 

complete data. In the framework of the SMs, it is not always reasonable to assume that MAR holds, and a wide 

range modeling approaches for MNAR data have been proposed. One such is the model proposed by Diggle 

and Kenward (1994) for continuous outcomes with dropout. Diggle and Kenward (1994) consider a SM for the 

study of a longitudinal measurement when data are MNAR by letting the probability of dropout depend on the 

possibly unobserved measurements. Similarly, we consider the measurement model to be of the linear mixed 

effects model (Laird and Ware, 1982), mentioned in equation (8). In agreement with notation introduced in 

Section 2, the selection model arises when the joint likelihood of the measurement process and the dropout 

process is factorized as follows 

 

 (9) 

where where Xi denotes the design matrix for fixed effects, Si denotes the design matrix for ran-dom effects. 

The model for dropout process is based on a logistics regression for the conditional probability of dropout at 

occasion j, given the subject is still in the study. Assume gi(yij , hij ) denote this probability, where hij represent 

the history of the measurement process. Thus, one can assume that gi(yij , hij ) satisfies the model 

 

 (10) 

 

where η(hij , yij ) is the linear predictor depending on hij and yij . Modelling the dropout mechanism may be 

simplified in the expression in equation (10) by assuming η(hij , yij ) depends only on the current measurement 

and the previous measurement yij−1, but not on future measurements or higher order history, with 

corresponding regression coefficients, γ1 and γ2. Higher order history can be modeled, but we assume first 

order history for simplicity. This leads to the following logistic expression 

 (11) 

Model (11) contains special cases corresponding to MAR and MCAR mechanisms that can be obtained from 

γ2=0 or γ1=γ2=0, respectively. A likelihood ratio test (LRT) can be used to compare model fit under a model 

that assumes the missing data due to dropout are MCAR versus MAR, that is, the LRT for MCAR versus MAR 

has an approximate χ21 distribution (Diggle and Kenward, 1994). However, the use of the LRT statistic is 

inappropriate for hypothesis test for MNAR versus MAR when all the other modeling assumptions hold, due to 

the fact that the behavior of the LRT statistic for the MNAR parameter γ2 is non-standard, since the availability 

of the information on γ2 is very rare and interwoven with other features of both measurement and dropout 

models (Jansen et al., 2006). In practice, such a distinction (MAR/MNAR) can only be made using untestable 

modeling assumptions such the distributional form, see, Kenward (1998). This problem is really laid bare in 

Molenberghs et al. (2008) which shows that the formal-based distinction between MAR and MNAR is not 

possible as for any MNAR model there exists an MAR model that fits the data equally well. The similarity of the 

MAR and MNAR models with respect to fitting to the observed data, may present different predictions of the 
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unobserved outcomes, conditional upon the observed ones. Hence, for such MNAR models, one 

recommendation is to use a sensitivity analysis; that is, if the assumptions are changed, the conclusions from 

the primary (typically MAR) analysis are also changed. 

3.11.2 Pattern mixture models (PMMs)  

In contrast to SMs, the PMMs specify the joint distribution in terms of f(Yi, Di | Xi) = f(Di | Xi)f(Yi | Di, Xi). 

PMMs stratify patients according to their dropout pattern. Namely, a separate model is fit for each pattern 

and then the results can be combined across the different patterns in order to derive an average estimate of 

the model parameters. Therefore, the joint distribution of the longitudinal measurements as well as the 

dropout indicators is divided into response pattern so that the distribution of the longitudinal measurements 

depends on the pattern of responses. The PMMs are under-identified, or possess non-estimable parameters. 

Therefore, some identifying constraints are required. Little (1993, 1994) proposed the use of the identifying 

restrictions in which inestimable parameters of the incomplete patterns are set equal to (functions of) the 

parameters describing the distribution of the completers to deal with under-identifiability of these models. In 

fact, there is an alternative major strategy simplified to deal with the under-identifiability of PMMs, called 

model specification in which the different pattern allows for sharing of certain parameters so that the missing 

pattern can borrow information from patterns with more data points (Verbeke and Molenberghs, 2000). The 

advantage of this strategy is that the number of parameters decreases which is in general an issue with PMMs. 

In this article however we focus on the PMMs via an idea of identifying restrictions strategy. Assume that there 

are t = 1, ..., T dropout patterns, where the dropout indicator, introduced in section 2, is d = t + 1. The 

complete data density, for pattern t, can be expressed as 

ft(y1, ..., yT ) = ft(y1, ..., yt)ft(yt+1, ..., yT | y1, ..., yt). (12) 

In this equation (12), the first factor ft(y1, ..., yt) is identified from the observed data assuming the first factor 

is known, and modeled using the observed data. Whereas the second factor is not identifiable from the 

observed data. In order to identify the second component, the identifying restriction can be applied (Verbeke 

and Molenberghs, 2000). It is often necessary to base this identification on all patterns for which a given 

component is identified. We denote this component by ys. Thus, this can be described as 

(13) 

 We denote the set of ωsj used by the vector ωs, components of which are typically non-negative. Every ωs 

that sums to 1 provides a valid identification scheme. Hence, by incorporating equation (13) into (12), we have 

 (14) 

To establish the complete data density, it is clear in equation (14) whose information can be used to 

complement the observed data density in pattern t. According to Little (1993), there are three sets of 

identifying restrictions associated with such choices of ωs. (1) Complete case missing values (CCMV) when 

ft(ys | y1, ..., ys−1) = fT (ys | y1, ..., ys−1), s = t + 1, ..., T, (15) 

corresponding to ωsT = 1 and all others equal 0, which is to say that identification is always done from the 

completers’s pattern. (2) Neighboring case missing values (NCMV), in which the nearest identified pattern can 

be used as follows 

 

ft(ys | y1, ..., ys−1) = fs(ys | y1, ..., ys−1), s = t + 1, ..., T. (16) 

 

The NCMV restriction follows from setting ωs = 1 and all others equal 0. Finally, available case missing values 

(ACMV). With regard to the corresponding ωs for ACMV, there always is a unique choice. Molenberghs et al. 

(1998) state that the corresponding ωs can have the following components 
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 (17) 

where αj is the fraction of observations in pattern j. Clearly, ωsj defined by (17) contains positive components 

and sum to 1. That is, a valid density function is defined. The SMs and PMMs can be connected using this MAR-

ACMV link. The ACMV is reserved for a counterpart of MAR in the PMMs. A specific counterpart to MNAR-SMs 

has been studied by Kenward et al. (2003). 

4 Application examples  

4.1 Objectives of the applications  

Note that the present study is essentially a simple application scenarios for comparison of meth-ods, rather 

than an extensive simulation study. This application section has been divided into two application examples: 

the first example placed strong emphasis on ignorable dropout area which is often used synonymously with 

MCAR and MAR. In this regard, the scope of the first example was limited to MAR dropout rather than the 

much stronger assumption MCAR as, in principle, the MCAR assumption is too strong to generally hold in 

longitudinal clinical trials (Molenberghs and Kenward, 2007). The aim of this example is to investigate some of 

the aforementioned methods to specify the most appropriate method as well as gain insight into the 

appropriateness of these tech-niques for handling dropout. The second example focused on MNAR modelling 

that can be used to deal with the change over time in the outcome score and factors that influence this change 

in modelling incomplete longitudinal data with continuous outcomes. The aim of the second example is to deal 

with MNAR dropout by explicitly modelling the assumptions that caused the dropout and incorporated this 

additional model into the model for the measurement data, and to assess the sensitivity of the modelling 

assumptions. 

4.2 Example 1: The heart rate data  

The data set to be analyzed in this example originates from the clinical trial to study the effect of three 

treatments on heart rate of humans. Full details of this experiment are given in Millikin and Johnson (2009). It 

is an experiment involving three drugs (AX23, BWW9, and CTRL) and where each patient was measured 

repeatedly at four different time points (j = 1, 2, 3, 4). After the drug was administered, each patient’s heart 

rate was measured every five minutes for a total of four times. 
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To be precise, each patient’s heart rate was measured 5, 10, 15 and 20 minutes after administering the 

treatment. This experiment illustrates the layout for a simple repeated measures experiment. The large size 

experimental unit is the subject, and the smaller size experiment unit is the time interval when using the split-

plot in time notation. At the start of the study n female human subjects were randomly assigned to each drug. 

Figure 1 shows the distribution of measurements in terms of box-plots at all four time points by all three drug 

groups. The objective of this experiment was to investigate the drug-response effects, i.e. if the drugs have an 

effect on heart rate, compare drug groups with each other, including time effects and to find the least-square 

means. In this paper, we consider the significance of drug main effects, time main effects and the interaction 

of time and drug effects. The outcome of the analysis reported here was heart rate (HR). Let HRijk denote the 

heart rate of patient i where i=1,...,8, at time j for j=1,...,4, on drug k, where k=1, 2, 3. We consider the 

following linear model for HRijk, where the response of the subject i at time j: 

 

HRijk = β0 + β1Tj + β2Dk + β3(T ∗ D)jk + εijk, (18) 

 

where T is the time, D is the drug, (T ∗ D) is the drug-by-time interaction and εijk are unknown independent 

and identically distributed normal random error, with mean 0 and variance σε2. In this clinical trial, there are 

no actual dropouts. This provides us with an opportunity to generate MAR dropouts in order to compare the 

performance of the MI, LOCF, CC and direct likelihood analysis (DL) methods to deal with MAR dropouts. To do 

so, the following steps were planned and executed: 

• We fit a linear mixed model (LMM) (18) using the complete data set to derive parameters of interest.  

• From the complete data set, we draw 1000 random samples of n=96. The dropouts were created in 

the outcome, HR, under 10%, 20% and 30% rates, according to the MAR assump-tion, assuming the dropouts 

in HR is related to observed values, in the sense that patients with higher heart rate at one measurement 

occasion tend to drop out of the experiment at the next occasion. Namely, dropouts were created in HR by 

randomly deleting all observa-tions greater than 75 as a threshold indicating high heart rate. The other 
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covariates were however kept intact. The observations that triggered the dropouts were kept but all other 

subsequent observations were deleted. This scenario was generated or replicated 1,000 times. The implication 

of the MAR assumption in our case is that, patients who are observed to be weaker (deduced by way of their 

previous observed outcome) are more likely to dropout when they reach a certain value of the HR, as long as 

their probability of dropout does not further depend upon their missing responses. We assumed a monotone 

dropout pattern, which is to say that for each patient, if a HR’s observation was dropped out for a third time 

point, the subsequent observation in the fourth time point for that patient was also deleted.  

• The MI, DL, CC and LOCF methods were applied to each generated data set. (1) MI was carried out 

using SAS PROC MI to fill in all the dropouts for each generated sample.  

The imputation model is based on model (18) which assumes multivariate normality of the variables. To 

increase the efficiency of imputation, we used all the available data including the outcome of interest, HR, to 

predict the dropouts as they are potentially related to the imputed variable as well as to the missingness of the 

imputed variable. MI was applied to generate M = 5 complete data sets. This is often sufficient to obtain 

satisfactory results (Rubin, 1987; Schafer, 1999). LMM was then fitted to each imputed data set using SAS 

procedure MIXED to estimate the overall parameters and their variances. The analysis model that we 

considered is based on (18). The results of the analysis from these 5 completed (imputed) data sets were 

combined into a single inference. This was done by using SAS procedure MIANALYZE. (2) LOCF and CC were 

conducted by using SAS macros available from the authors. After applying LOCF and CC, the same model (18) 

as before being fitted is analyzed. LOCF replaced the dropouts by the last available observed data, and once 

the data set has been completed in this way, it is analyzed as if it were fully observed. CC discarded patients 

with dropouts, and then analyzed only patients with fully observed data.  

(3) For DL implemented with PROC MIXED, the data in model (18) was analyzed as they are, consistent with 

ignorability assumption. Parameters were estimated using Restricted Maximum Likelihood with the Newton-

Raphson algorithm.  

• Finally, the results from these four methods were then compared with those obtained from the 

complete data. The comparisons were evaluated in terms of two statistical criteria: bias and  efficiency. These 

criteria are recommended by Schafer and Graham (2002). We defined bias as the difference between the 

average estimate and the true value. Thus, a better technique is that which does on average approach the 

population value with less bias. The efficiency criteria has been defined as the variability of the estimates 

around the true population coef- ficient. Efficiency has been calculated by the average width of the 95% 

confidence interval. 

Thus, a narrower interval is always desirable as it leads to more efficient method. 

 

 

 

 

 

4.3 Results and discussion from example 1  
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The results of MI, DL, CC and LOCF in terms of bias and efficiency, under three dropout rates are listed in Table 

(1). By looking at this table, we find the following observations. Overall, the MI and DL methods yielded equally 

good performance and outperformed the CC and LOCF methods. For all dropout rates, among the four 

methods examined here, CC and LOCF were notable for consistently providing the most biased estimates 

versus those obtained by MI and DL. The benefits of MI and DL over the CC and LOCF methods are clearly 

evident. This conclusion was unsurprisingly as both methods, MI and DL, are Bayesian and likelihood based 

analyses, therefore valid under the MAR dropout assumption (Verbeke and Molenberghs, 2000). The findings 

based on both MI and DL method were generally similar for all the dropout rates, and in some cases they 

yielded the same estimates. We refer here to estimates of time1 and time2. Such results should be expected 

considering the fact that the first and second time points contained observed data for all patients that were 

considered in the trial. Further, our results confirm the argument put forward by Molenberghs and Kenward 

(2007), that is; the LOCF method makes the strong assumption that there is no change in the patient response 

between the observed time points and the missing time period, which can lead to biased estimates. Moreover, 

the results support the Little and Rubin (2002)’s recommendation to not use CC for handling dropout as it 

leads to reduction in the sample size which reduces the precision of estimates and therefore can lead to biased 

results. 

 

As mentioned earlier, a wider interval implies a less efficient, and therefore the widest also implies the worse, 

95% is highlighted. An examination of the efficiency condition revealed that, regardless of the dropout rate, 

the intervals yielded by MI and DL methods were less wide than those based on the CC and LOCF methods, and 

therefore such estimates were more efficient than were those for CC and LOCF. The CC and LOCF methods 

were less efficient most frequently, regardless of the dropout rate. This is to be expected for both methods as 

intuitively the LOCF’s weakness is that it tends to create inflated artificial information than truly expected as 
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imputed values are handled as observed values (Satty and Mwambi, 2012). Further, this CC disadvantage is 

well documented in Molenberghs and Kenward (2007) who noted that this method can lead to serious 

inefficient estimates and therefore can be very misleading. On the other hand, between the two CC and LOCF 

methods, the LOCF was more efficient than the CC method. Efficiency by CC and LOCF methods appeared to be 

independent of the dropout rate. Overall, the results show that both MI and DL methods offer high  efficiency 

under the MAR dropout mechanism. 

4.4 Example 2: The serum cholesterol data  

This data concerns the analysis of repeated measures designs and demonstrates how to investigate a specific 

scenario based on dealing with longitudinal data that has an MNAR dropout mechanism. 

The data used here is described and reported in Schoenfield and Lachin (1981). In this trial, 103 patients were 

randomly assigned to three treatment groups corresponding to two doses; that is, high-dose (750 mg per day), 

low-dose (375 mg per day) and placebo, and were to be treated for four weeks. This paper is based on a subset 

of the data on patients who had floating gallstones and who were assigned to the high-dose and placebo 

groups. In this experiment it was suggested that chenodiol would dissolve gallstones but in doing so might 

increase levels of serum cholesterol. As a result, serum cholesterol (mg/dL) was measured at baseline and at 6, 

12, 20 and 24 weeks of follow-up. Further, many cholesterol measurements contain dropouts because of 

missed visits, laboratory specimens were lost or inadequate, or patient follow-up was terminated. Additionally, 

all patients have observed values at time 6. One group of patients received study treatment (drug and 

placebo), but dropped out of the study before the scheduled post-baseline time. These patients dropped out 

of the study at time point 12. However, other patients dropped out of the study either at time point 20 or 24. 

Thereby, the data presents three possible dropout patterns (dropout at time points 12, 20, or 24). All 103 

patients are observed at the first occasion, whereas there are 93, 78and 67 patients seen at the second, third 

and fourth weeks, respectively. The percentage of patients that are still in the study after each week is 

tabulated in Table 2 by treatment arm. The aim of this clinical trial was to study the safety of the drug 

chenodiol for the treatment of cholesterol gallstones. However, we restrict our attention to explore the 

potential influence of dropout on the outcome of interest, the serum cholesterol, as well as the interactive 

effect of dropout with week and treatment-related influences on the serum cholesterol by using both SMs and 

PMMs. Findings from the PMMs will be analogous to those from the SMs to obtain additional insights into the 

serum cholesterol data. 

 
4.4.1 SMs applied to the serum cholesterol data  

We fit the Diggle and Kenward model in accordance with the MCAR, MAR and MNAR assump-tions to the 

serum cholesterol data. To do so, we combine the measurement model with the logistic regression for dropout 

model. We assume different intercepts and treatment effects for each of the four time points, with a (4×4) 

unstructured variance-covariance matrix. In particular, we consider a multivariate normal model, with 

unconstrained time trend under placebo and an occasion-specific treatment effect. Since the above data 

contains 103 patients (i=1,...,103) on four time points (j=6, 12, 20 and 24), the fitted model can be expressed as 

follows 

Yij = βj1 + βj2  i + εij , (19) 

where i = 0 for placebo and 1 = 1 for active drug. Using this way, we can obtain the parameter estimates and 

standard errors as well as p-values for the eight mean model parameters. Model (19) was fitted using SAS 

procedure MIXED with REPEATED statement. For the dropout model, the probability of serum cholesterol is 
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assumed to follow the logistic regression model. Therefore, we use the following logistic regression model for 

the dropout model probabilities 

logit*g(yij−1, yij )+ = logit*p(Di = j | yij−1, yij )+ = γ0 + γ1yij−1 + γ2yij , j = 2, 3, 4, 5,   (20) 

where γ0 is the intercept, γ1 is the effect of the measurement prior to dropout and γ2 is the effect of the 

measurement at the time of dropout. Model (20) was fitted with an intercept, an effect for previous outcome 

and an effect for the current unobserved measurement, corresponding to MCAR, MAR and MNAR, 

respectively. Note that dependence on future unobserved measurements is theoretically possible, but for 

simplicity, we model dependence on the current unobserved measure-ments. The parameters in Model (20), 

were estimated using a code written in SAS provided by Dmitrienko et al. (2005) that maximizes the log-

likelihood for the model using PROC IML. 

4.4.2 PMMs applied to the serum cholesterol data  

We now fit the PMMs to the serum cholesterol data using the the idea of identifying restrictions strategy. To 

do so, we use the following steps: (1) we fit the initial model to the observed data within each of the patterns 

ft(y1, ..., yt), (21) 

where t = 1, ..., T represent the observed dropout times in the data set. Namely, we fit a sepa-rate model 

within each pattern. Thereafter the resulting parameter estimates and their estimated variance-covariance 

matrices were used to extrapolate the patterns. (2) we select an identifica-tion scheme to determine the 

conditional distributions of the unobserved measurements, given the observed ones 

ft(yt+1, ..., yT | y1, ..., yt). (22) 

As stated earlier, each of such conditional distributions is a mixture of known normal densities for continuous 

repeated measures. According to the weights ws introduced in equation (13), an easy way to simulate values 

from the mixture distribution is to randomly select a component of the mixture and then draw from it. In this 

regard, we choose an identifying restriction, mentioned earlier, to define the conditional distributions of the 

unobserved measurements, conditional upon the observed ones. (3) we fit a model to the so-augmented data 

by using MI techniques to draw values for the unobserved components, conditional upon the observed 

outcomes and correct pattern-specific density in model (22). As mentioned above, MI consists of three steps: 

imputation, analysis and combination. The identifying step corresponds to the so-called imputation step, and 

the final model corresponds to the analysis step. Finally, the combination step, is where the inferences from a 

number of imputations are drawn together and combined into a single one. After applying each of the three 

identifying restrictions, model (19) is analyzed again. For MI technique, we again use M=5. Namely, we ended 

up with totally five multiply-imputed data sets for each choice of identifying restriction strategy which can be 

analysed, using several possible models. Once the imputations have been generated, the final analysis model 

from each completed data sets is fitted and MI inference conducted. The parameter and precision estimates 

are obtained using classical MI machinery. In particular, the asymptotic covariance matrix of the form (5). The 

analysis of identifying restrictions, fitting of imputed data, and a combination of the results into a single 

inference was implemented using the SAS macro. This SAS macro dealt with the analysis of the three types of 

identifying restrictions as follows. First, fit the linear mixed model per pattern using PROCs SORT and MIXED. 

Second, complete the data using ACMV, CCMV and NCMV restrictions using PROCs IML and MI. Third, analyze 

the 5 complete data sets using a linear-mixed model using PROC MIXED. Fourth, combine the results from the 

5 model fits using PROC MIANALYZE. This SAS macro is available from the authors on request. 

4.4.3 Results and discussion from example 2  

Table 3 shows the results for the marginal measurement model as well as in the logistic dropout model. Our 

main interests lie in the marginal treatment effect. There is no overall treatment effect and p-values between 

the three models do not vary too much. However, the situation is different for the occasion-specific treatment 

effects considered here. For all weeks, all four p-values 
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the treatment effects indicate non-significance, whereas for all cases the p-values are certainly highly 

significance (p < 0.0001) for all intercepts. The LRT test statistic for comparing the MAR and MCAR models is 

17.1. The corresponding tail probability from χ2 on 1 degree of freedom is p < 0.001 which is significant. This 

indicates that there is a significant evidence for MAR. In other words, dropout completely at random can be 

ruled out in the context of the assumed model. 

However, great care has to be taken with such a conclusion using only the data under analysis (Diggle and 

Kenward, 1994). We now focus on factors which influence dropout. In doing so, in the full SMs, the logistic 

regression for dropout is modeled based on (20). As can be seen in Table 2, the maximum likelihood estimates 

for ψ1 (0.04) and ψ2 (-0.16) are not necessarily equal, however, their signs are different. This finding is not 

surprising. It confirms the argument put forward by Molenberghs and Verbeke (2005). They pointed out that 

since two subsequent measurements are usually positively correlated, the dropout model can depend on the 

increment, i.e., yij −yi,j−1. The full dropout model estimated from the MNAR process is as follows: 

 

logit*p(Di = j | yij−1, yij )+ = −1.64 − 0.12yi,j−1 − 0.16(yij − yi,j−1). (23) 

 

We now re-parameterize this fitted model in terms of the increment and the sum of the successive 

measurements to obtain some insight into this fitted model. Therefore, by rewriting equation (20), the fitted 

dropout model equals 

 

logit*p(Di = j | yij−1, yij )+ = ϑ0 + ϑ1(yi,j + yi,j−1) + ϑ2(yij − yi,j−1), j = 2, 3, 4, 5.   (24) 

 

Here, ϑ1 = (ψ1 + ψ2)/2 and ϑ2 = (ψ1 − ψ2)/2, representing dependence on level and increment in the serum 

cholesterol, and these quantities are likely to be much less strongly correlated than are yij and yi,j−1. Thus 

from the fitted MNAR model in equation (24), we have 

logit*p(Di = j | yij−1, yij )+ = −1.64 − 0.06(yi,j + yi,j−1) + 0.10(yij − yi,j−1), (25) 

 

which is to say that the probability of dropout increases with larger negative increments. In other words, those 

patients with a greater increase in the overall level of the serum cholesterol from the previous week have a 

higher probability of dropping out of the experiment. 

The results in Table 3 show that the association p-values for the marginal effect assessments are all 

nonsignificant, their p-values being all greater than 0.05. However, the association p-values for the intercepts 

are highly significant (p < 0.0001), in line with the p-values obtained from the SMs analysis. These findings 

confirm those obtained from the SMs formulation which gives more weight to this conclusion. Overall, it is 

clear that there is strong evidence for no significant treatment in the context of serum cholesterol data. This 

explains the fact that PMMs using identifying restrictions strategy play a very similar role to the modelling 

assumptions in the SMs based on Diggle-Kenward type (Michiels et al., 1999). Therefore, one can put more 

confidence in this conclusions as many authors (for example, Michiels et al., 1999) have argued that greater 

confidence in a conclusion can be reached when the analysis of joint applications of these models leads to 

essentially similar inference when assessing significant effects, such as marginal treatment effects. In contrast 

to SMs, the use of CCMV, NCMV and ACMV restrictions strategy did not allow an estimation of whether the 

dropout process is MNAR or not, because of differences in the modelling assumptions. According to 

Molenberghs et al. (1998), the identifying restrictions in PMMs context can be used only to relate the model to 

a MAR mechanism. Thus an important issue is to equate results for both the ACMV and MAR to make a clear 

and useful connection between the selection model and the pattern mixture model framework (Verbeke and 

Molenberghs, 2000; Kenward et al., 2003). With this in mind, the same is true for the selection model, MAR-

based ACMV restrictions indicating non-significant treatment effects at all weeks. This can be explained to 

mean that the treatment effect appear to be independent of the ACMV (MAR) assumption. Although 

corresponding models include the same effects, the estimates for ACMV are slightly different to those for 
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MAR. These slight differences are to be expected as argued in Kenward et al. (2003) that both models are 

similar in spirit but not necessarily identical. 

5 Conclusion  

This study reviewed some of the key modelling strategies and basic issues in statistical data analysis to address 

the dropout problem in longitudinal clinical trials. The main objective was to provide an overview of issues and 

different methodologies in the case of dropout in longitudinal clinical trials due to a result of patients dropping 

out of a study. The focus was on dropout with a monotone pattern. The methodologies investigated for 

handling dropout were: Deletion methods, Imputation-based methods, Data augmentation methods, 

Likelihood-based methods, and MNAR-based methods. For each methodology, several methods that are 

commonly used to deal with dropout are presented. Two application examples were presented to highlight 

two ways. On the one hand, the first application example served to demonstrate comparison of existing 

approaches providing useful and important information regarding their applications. The second application 

example, on the other hand, provided techniques that might serve as tools in the context of a sensitivity 

analysis thereby broadening the possibilities under such. 

In the context of planning data collection, clinical trial study designers must think of study or clinical designs 

and data collection strategies that minimize dropouts since data collection plays an important role in the 

problem of dropout for a specific study. This means that careful planning can reduce the amount of dropouts 

although there is no rule concerning the level of dropouts that can be acceptable. Thus, at the analysis stage, 

how to handle the dropout and how to minimize the amount of dropouts are main issues that must be 

considered when planning and designing a study for data collection. In the presence of dropout, knowing the 

reasons why the data were dropping out, as well as exploring the dropout pattern become very important and 

helpful in choosing the right statistical procedures to approximate dropouts. In fact, there is no universal 

technique for handling all dropout situations, however, there are some rules that can be considered. As such, 

it is necessary to design a study where the potential pattern of dropouts is considered when specifying the 

primary analysis. In conclusion, it is important to clearly understand the limitations of the different techniques 

for handling dropout, and the current study however attempted to review many of these limitations. 
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